Российский фонд
фундаментальных
исследований

Физический факультет
МГУ им. М.В.Ломоносова
 

05.10 Нелинейные диспергирующие волны, солитоны

 

Жук В.И. «Периодические и солитонные решения интегро-дифференциального уравнения из теории трансзвуковых течений со свободным взаимодействием» Прикладная математика и механика, 82, № 6, с. 767-774 (2018)

Рассматривается нелинейное интегро-дифференциальное уравнение, к которому в некоторых специальных случаях удается свести описание трансзвуковых движений и которое в определенных предельных ситуациях переходит в уравнение Бенджамина–Оно. Указываются точные решения в виде уединенных и периодических волн.

Прикладная математика и механика, 82, № 6, с. 767-774 (2018) | Рубрика: 05.10

 

Васильева О.А., Лапшин Е.А., Руденко О.В. «Интенсивные импульсы в релаксирующих средах с ограниченным "временем памяти", степенными и неаналитическими нелинейностями» Акустический журнал, 65, № 1, с. 3-9 (2019)

Изучены процессы, сопровождающие распространение ограниченных во времени импульсных сигналов в релаксирующей среде, которая обладает нелинейностью одного из следующих типов: степенной (квадратичной, кубичной) или неаналитической (модульной, квадратично-кубичной). Вместо обычных интегро-дифференциальных уравнений с экспоненциальными или дробно-степенными ядрами использована упрощенная модель среды с конечным “временем памяти”. Такая среда “помнит” свою предысторию в течение ограниченного промежутка времени, а соответствующее ядро интегрального члена отлично от нуля лишь на конечном интервале. Для этой модели удается свести задачу к решению дифференциально-разностного уравнения и существенно сократить объем вычислений по сравнению с исходным интегральным уравнением. Описаны процессы, сопровождающие эволюцию импульсов – формирование ударных фронтов сжатия и разрежения, нелинейных структур треугольной и трапециевидной формы. Выяснено влияние времени релаксации на протекание указанных процессов.

Акустический журнал, 65, № 1, с. 3-9 (2019) | Рубрики: 05.10 06.06