Российский фонд
фундаментальных
исследований

Физический факультет
МГУ им. М.В.Ломоносова
 

07.04 Статистическая гидроакустика

 

Сухинов А.И., Чистяков А.Е., Проценко Е.А., Сидорякина В.В., Проценко С.В. «Метод учета заполненности ячеек для решения задач гидродинамики со сложной геометрией расчетной области» Математическое моделирование, 31, № 8, с. 79-100 (2019)

Рассматривается развитие и применение метода учета заполненности прямоугольных ячеек материальной средой, в частности, жидкостью для повышения гладкости и точности конечноразностного решения задач гидродинамики со сложной формой граничной поверхности. Для исследования возможностей предлагаемого метода рассмотрены две задачи вычислительной гидродинамики – пространственно-двумерного течения вязкой жидкости между двумя соосными полуцилиндрами и пространственно-трехмерная задача волновой гидродинамики – распространения волны в прибрежной зоне и ее выхода на сушу. Для решения поставленных задач используются прямоугольные сетки, учитывающие заполненность ячеек. Аппроксимация задач по времени выполнена на основе схем расщепления по физическим процессам, а по пространственным переменным – на основе интегро-интерполяционного метода с учетом заполненности ячеек и без ее учета. Для оценки точности численного решения первой задачи в качестве эталона используется аналитическое решение, описывающее течение Куэтта–Тейлора. Моделирование производилось на последовательности сгущающихся расчетных сеток размерами: 11×21, 21×41, 41×81 и 81×161 узлов в случае применения метода и без его использования. В случае непосредственного использования прямоугольных сеток (ступенчатой аппроксимации границ) относительная погрешность расчетов достигает 70%; при тех же условиях использование предлагаемого метода позволяет уменьшить погрешность до 6%. Показано, что дробление прямоугольной сетки в 2–8 раз по каждому из пространственных направлений не приводит к такому же повышению точности, которой обладают численные решения, полученные с учетом заполненности ячеек.

Математическое моделирование, 31, № 8, с. 79-100 (2019) | Рубрика: 07.04