Российский фонд
фундаментальных
исследований

Физический факультет
МГУ им. М.В.Ломоносова
 

V

Verona E.

 

Anisimkin V.I., Verona E., Kuznetsova A.S., Osipenko V.A. «Acoustic Wave Propagation Along Piezoelectric Plate Coated with Piezoelectric Films» Акустический журнал, 65, № 2, с. pp. 171-177 (2019)

A novel solid state structure consisting of piezoelectric plate sandwiched between two piezoelectric films is suggested as propagation medium for acoustic waves. Considering, as an example, quartz plate coated with AlN film and with AlN film together with ZnO film, the main characteristics of the Lamb and SH acoustic modes are numerically calculated and compared with each other. It is shown that i) the range of acoustic parameters achievable in structures is wider than that is for an uncoated plate, ii) generation of waves in the plate with one film is accomplished by 12 transducer configurations, while there are 32 configurations to excite the same waves in two film structure, iii) dispersion of the wave velocities and coupling constants depend on the mode order, mode type, film thickness, plate thickness, and transducer configuration. This property makes selection of appropriate modes more flexible. Results of calculations are partially verified experimentally.

Акустический журнал, 65, № 2, с. pp. 171-177 (2019) | Рубрика: 06.14

Vignola Joseph F.

 

Guan Shane, Southall Brandon L., Vignola Joseph F., Judge John A., Turo Diego «Sonar inter-ping noise field characterization during cetacean behavioral response studies off Southern California» Акустический журнал, 63, № 2, с. 204-215 (2017)

The potential negative effects of sound, particularly active sonar, on marine mammals has received considerable attention in the past decade. Numerous behavioral response studies are ongoing around the world to examine such direct exposures. However, detailed aspects of the acoustic field (beyond simply exposure level) in the vicinity of sonar operations both during real operations and experimental exposures have not been regularly measured. For instance, while exposures are typically repeated and intermittent, there is likely a gradual decay of the intense sonar ping due to reverberation that has not been well described. However, it is expected that the sound field between successive sonar pings would exceed natural ambient noise within the sonar frequency band if there were no sonar activity. Such elevated sound field between the pings may provide cues to nearby marine mammals on source distances, thus influencing potential behavioral response. Therefore, a good understanding of the noise field in these contexts is important to address marine mammal behavioral response to MFAS exposure. Here we investigate characteristics of the sound field during a behavioral response study off California using drifting acoustic recording buoys. Acoustic data were collected before, during, and after playbacks of simulated mid-frequency active sonar (MFAS). An incremental computational method was developed to quantify the inter-ping sound field during MFAS transmissions. Additionally, comparisons were made between inter-ping sound field and natural background in three distinctive frequency bands: low-frequency (<3 kHz), MFA-frequency (3–4.5 kHz), and high-frequency (>4.5 kHz) bands. Results indicate significantly elevated sound pressure levels (SPLs) in the inter-ping interval of the MFA-frequency band compared to natural background levels before and after playbacks. No difference was observed between inter-ping SPLs and natural background levels in the low- and high-frequency bands. In addition, the duration of elevated inter-ping sound field depends on the MFAS source distance. At a distance of 900–1300 m from the source, inter-ping sound field at the exposure frequency is observed to remain 5 dB above natural background levels for approximately 15 s, or 65%, of the entire inter-ping interval. However, at a distance of 2000 m, the 5 dB elevation of the inter-ping SPLs lasted for just 7 s, or 30% of the inter-ping interval. The prolonged elevation of sound field beyond the brief sonar ping at such large distances is most likely due to volume reverberation of the marine environment, although multipath propagation may also contribute to this.

Акустический журнал, 63, № 2, с. 204-215 (2017) | Рубрика: 13.01