Российский фонд
фундаментальных
исследований

Физический факультет
МГУ им. М.В.Ломоносова
 

Сибирский журнал науки и технологий. 2017. 18, № 2

 

Альтшулер А.Ш., Бобронников В.Т., Трифонов М.В. «Разработка алгоритма управления движением ракеты-носителя на начальном участке полета с использованием метода АКОР» Сибирский журнал науки и технологий Ранее "Вестник Сибирского государственного аэрокосмического ун-та им. акад. М.Ф. Решетнева", 18, № 2, с. 314-322 (2017)

В качестве объекта исследования рассматривается система управления движением РН на начальном участке полета 0–300 метров. На этом участке газодинамическая струя двигателя РН оказывает негативное воздействие на сооружения стартового комплекса. Это воздействие может быть снижено за счет увода струи в радиальном направлении от точки старта по заранее заданной программе управления. Целью исследования является разработка оптимального регулятора СУ РН на этапе увода, обеспечивающего реализацию программы увода. Предлагается модифицированный вариант решения задачи аналитического конструирования регуляторов А. М. Летова. Особенностью постановки задачи является то, что вектор выхода системы зависит и от вектора состояния РН, и от управляющей переменной, и качество управления в задаче оценивается с использованием квадратичного терминально-интегрального критерия. Такой вид критерия позволяет с заданной точностью отслеживать требуемую программу изменения следа газодинамической струи РН на стартовой плоскости и обеспечить заданное положение РН в конце этапа увода. Задача решается с использованием линеаризованных уравнений движения РН. Результаты моделирования движения РН подтверждают работоспособность и эффективность разработанного оптимального регулятора системы управления РН. Расчеты показывают, что движение РН на этапе увода близко к вертикальному, угол отклонения сопла двигателя находится в допустимом диапазоне и величина рассогласования текущего положения следа струи с заданным программным не превышает 0,5 метра.

Сибирский журнал науки и технологий Ранее "Вестник Сибирского государственного аэрокосмического ун-та им. акад. М.Ф. Решетнева", 18, № 2, с. 314-322 (2017) | Рубрики: 17 18

 

Асланян Р.О., Анисимов Д.И., Марченко И.А., Пантелеев В.И. «Имитаторы солнечного излучения для термовакуумных испытаний космического аппарата» Сибирский журнал науки и технологий Ранее "Вестник Сибирского государственного аэрокосмического ун-та им. акад. М.Ф. Решетнева", 18, № 2, с. 323-327 (2017)

Надежность космического аппарата подтверждается на этапе проведения наземной экспериментальной отработки. Следовательно, вероятность безотказной работы космического аппарата зависит от качества экспериментальной отработки. Термовакуумные испытания являются одним из главных этапов наземной отработки системы терморегулирования и космического аппарата в целом. Целью термовакуумных испытаний является подтверждение теплового состояния аппарата и расчетных теплофизических характеристик системы терморегулирования в условиях, близких к эксплуатационным, а также подтверждение соответствия разработанной тепловой математической модели космического изделия. Основным требованием к термовакуумным испытаниям является имитация условий штатного функционирования аппарата. При анализе результатов испытаний регистрируемые температурные параметры проверяются на соответствие с допустимыми значениями. Термовакуумные испытания проводятся на специально оборудованных испытательных комплексах, обеспечивающих имитацию внешних тепловых факторов, воздействующих на космический аппарат при орбитальном функционировании. Одним из базовых и наиболее сложных элементов таких комплексов является имитатор солнечного излучения, имитирующий солнечное воздействие на космический аппарат при орбитальном функционировании. Солнечные имитаторы создают поток непрерывного оптического излучения, спектральные характеристики которого должны быть близки к спектральным характеристикам солнечного излучения. Представлен анализ некоторых существующих имитаторов солнечного излучения для выбора оптимальной базовой конструкции с целью дальнейшего совершенствования, направленного на снижение энергозатратности эксплуатации имитатора солнечного излучения для испытаний космических аппаратов и улучшения качества термовакуумных испытаний. Описаны основные требования, предъявляемые к имитаторам солнечного излучения, наиболее соответствующие характеристикам солнечного спектра и интенсивности в космическом пространстве. Было проведено сравнительное описание пяти образцов имитаторов солнечного излучения отечественного и зарубежного производства по четырем ключевым параметрам. Рассмотрен вопрос о возможности создания и применения компактных трансформируемых источников теплового излучения солнечного спектра с целью повышения качества термовакуумных испытаний для космических аппаратов различных классов.

Сибирский журнал науки и технологий Ранее "Вестник Сибирского государственного аэрокосмического ун-та им. акад. М.Ф. Решетнева", 18, № 2, с. 323-327 (2017) | Рубрика: 18

 

Кириллов В.А., Багатеев И.Р., Тарлецкий И.С., Баландина Т.Н., Баландин Е А. «Анализ концепций очистки околоземного космического пространства» Сибирский журнал науки и технологий Ранее "Вестник Сибирского государственного аэрокосмического ун-та им. акад. М.Ф. Решетнева", 18, № 2, с. 343-351 (2017)

Безопасность полетов космических аппаратов различного назначения определяется множеством факторов, одним из которых является возможность их разрушения или повреждения при случайном соударении с космическим мусором техногенного характера. Космический мусор техногенного характера – это все находящиеся на околоземной орбите космические объекты искусственного происхождения, включая фрагменты или части таких объектов, которые закончили свое активное функционирование. Исходя из официальных данных, с каждым годом количество объектов космического мусора техногенного характера растет. Объекты космического мусора техногенного характера в случае столкновения с ними могут привести к прекращению всякой деятельности в космосе, поскольку скорость движения этих объектов на разных орбитах может достигать сверхзвуковой. Ввиду особенностей геостационарной орбиты, связанных с неподвижностью космического аппарата относительно подспутниковой точки на Земле, по окончании срока эксплуатации космический аппарат должен быть уведен на орбиту захоронения. Это необходимо для обеспечения возможности установки в данную орбитальную позицию нового космического аппарата. Выход из строя геостационарного космического аппарата делает невозможным использование этой орбитальной позиции в будущем. Таким образом, актуальность работы обусловлена, с одной стороны, необходимостью освобождения орбитальной позиции, занятой выработавшим свой ресурс космическим аппаратом, с другой стороны, исключением угрозы столкновения неисправного космического аппарата с действующими. Представлена информация о запусках космических объектов в околоземное космическое пространство и количестве объектов космического мусора в нем за последние семь лет. Также рассмотрены существующие концепции очистки околоземного космического пространства. Приведены данные по концепции сервисного космического аппарата, разрабатываемой инженерами АО «ИСС» на базе существующих негерметичных платформ для геостационарных космических аппаратов. Цель данного исследования заключается в проведении анализа существующего техногенного засорения околоземного космического пространства и анализе существующих концепций очистки околоземного космического пространства. В заключение отмечено, что результаты анализа рассмотренных концепций учтены инженерами АО «ИСС» при разработке концепции сервисного космического аппарата для увода космического мусора из области геостационарной орбиты.

Сибирский журнал науки и технологий Ранее "Вестник Сибирского государственного аэрокосмического ун-та им. акад. М.Ф. Решетнева", 18, № 2, с. 343-351 (2017) | Рубрика: 18

 

Колинчук А.В. «Выравнивание поля освещенности имитатора солнечного излучения на основе конического рефлектора» Сибирский журнал науки и технологий Ранее "Вестник Сибирского государственного аэрокосмического ун-та им. акад. М.Ф. Решетнева", 18, № 2, с. 352-356 (2017)

Актуальной проблемой в области освоения космического пространства в наше время остается моделирование условий космического полета для испытаний космических аппаратов и отдельных их систем на Земле. Рассмотрена задача создания имитатора солнечного излучения для наземных испытаний солнечных батарей космического назначения на основе импульсной ксеноновой лампы удлиненной цилиндрической формы и конического рефлектора. Применение импульсных ксеноновых ламп в качестве источника излучения в имитаторах солнечного излучения позволяет воспроизводить излучение Солнца с достаточной степенью приближения по спектру и плотности потока. Малорасходящийся поток излучения можно получить с помощью осесимметричных зеркал (параболических, параболоцилиндрических, конических), в фокусах которых находятся источники излучения. Изложены аспекты создания трехмерной модели имитатора солнечного излучения для исследования его характеристик, а также для проведения экспериментальной проверки адекватности созданной трехмерной модели. Предложены два способа получения потока излучения имитатора солнечного излучения, соответствующего требуемым показателям по плотности, коллимированности потока, его спектру. Как искусственная расфокусировка источника излучения и конического отражателя, так и применение градиентного тонирования поверхности источника излучения либо конического отражателя позволяют уменьшить неравномерность распределения плотности потока излучения в 3 раза. Сделан вывод о принципиальной применимости и эффективности предложенных способов выравнивания неравномерности падающего светового потока для исследуемой оптической схемы. Предложенная конструкция имитатора солнечного излучения проста в техническом исполнении, не требует значительных капитальных и эксплуатационных затрат для своего функционирования. Предполагается дальнейшее исследование предложенной модели имитатора солнечного излучения и его апробации в лабораторных условиях.

Сибирский журнал науки и технологий Ранее "Вестник Сибирского государственного аэрокосмического ун-та им. акад. М.Ф. Решетнева", 18, № 2, с. 352-356 (2017) | Рубрика: 18