Российский фонд
фундаментальных
исследований

Физический факультет
МГУ им. М.В.Ломоносова
 

Наука и техника. 2021. 20, № 2

 

Дай Вэньци, Алексеев Ю.Г., Королёв А.Ю., Будницкий А.С. «Пластическое формообразование наконечника концентратора-волновода для ультразвуковой эндоваскулярной абляции» Наука и техника, 20, № 2, с. 101-108 (2021)

Одним из наиболее эффективных методов лечения внутрисосудистых образований в настоящее время является применение ступенчатых ультразвуковых волноводных систем трубчатого типа (концентраторов-волноводов) с полым сферическим наконечником. Его наличие обеспечивает возможность подачи жидких сред в зону дислокации внутрисосудистого образования с целью дополнительного кавитационного воздействия, а также максимально эффективное разрушение внутрисосудистых образований за счет виброударного воздействия. При существующих особенностях методов формообразования для получения полого сферического наконечника концентратора-волновода целесообразно использовать методы пластического деформирования – раздачу и обжим. В статье представлены результаты предварительного расчета, численного моделирования и экспериментальных исследований процессов формообразования наконечника концентратора-волновода раздачей и обжимом. На основе метода конечных элементов в среде программного комплекса ABAQUS выполнено моделирование операций раздачи и обжима трубной заготовки, позволившее: оценить напряженно-деформированное состояние деформируемого конического участка заготовки, изменение толщины стенки в процессе формоизменения и рассчитать длину заготовки для оформления конического участка; установить закономерности влияния геометрических параметров на силовые режимы процесса раздачи; установить параметры режимов формообразования наконечника концентратора-волновода методом раздачи и обжима, обеспечивающие формирование требуемой геометрии. Полученные результаты предварительного расчета, численного моделирования и экспериментальных исследований процессов формообразования наконечника концентратора-волновода раздачей и обжимом имеют схожие значения, что подтверждает корректность использования как метода предварительного расчета, так и численного моделирования при разработке технологии изготовления концентратора-волновода.

Наука и техника, 20, № 2, с. 101-108 (2021) | Рубрики: 14.03 15.03

 

Невдах В.В. «О выполнении закона сохранения энергии в теории упругих волн» Наука и техника, 20, № 2, с. 161-167 (2021)

В соответствии с законом сохранения энергии полная энергия замкнутой физической системы должна оставаться постоянной в любой момент времени. Энергия бегущей упругой волны состоит из кинетической энергии колеблющихся частиц среды и потенциальной энергии ее упругой деформации. В существующей теории упругих волн считается, что плотности кинетической и потенциальной энергий бегущей волны без потерь одинаковы в любой момент времени и меняются по одинаковому закону. Соответственно плотность полной энергии такой волны разная в различные моменты времени, а постоянным сохраняется только ее усредненное по времени значение. Таким образом, в существующей теории упругих волн закон сохранения энергии не выполняется. Цель настоящей работы – дать физически корректное описание этих волн. Предложено новое описание звуковой волны в идеальном газе, основанное на использовании системы волновых уравнений для возмущения скорости колебаний частиц газа, определяющего их кинетическую энергию, и для упругой деформации, определяющей их потенциальную энергию. Показано, что физически корректными решениями такой системы уравнений для бегущей звуковой волны являются гармонические решения, описывающие колебания возмущения скорости частиц газа и упругой деформации, которые сдвинуты по фазе на p/2. Получено, что положения максимумов кинетической и потенциальной энергий упругой волны, описываемых такими решениями, чередуются в пространстве через каждые четверть длины волны. Установлено, что через каждые четверть периода в волне без потерь происходит полное преобразование кинетической энергии в потенциальную и обратно, при этом в каждой пространственной точке волны ее полная плотность энергии одинакова в любой момент времени, что согласуется с законом сохранения энергии. Плотность потока энергии такой бегущей упругой волны описывается выражением для вектора Умова. Сделан вывод, что бегущую звуковую волну без потерь в идеальном газе можно рассматривать как гармонический осциллятор.

Наука и техника, 20, № 2, с. 161-167 (2021) | Рубрики: 05.02 05.03