Российский фонд
фундаментальных
исследований

Физический факультет
МГУ им. М.В.Ломоносова
 

Солнечно-земная физика. 2021. 7, № 1

 

Кудрявцева А.В., Мышьяков И.И., Уралов А.М., Гречнев В.В. «Микроволновый индикатор потенциальной геоэффективности и жгутовая магнитная структура солнечной активной области» Солнечно-земная физика, 7, № 1, с. 3-12 (2021)

DOI https://doi.org/10.12737/szf-71202101 Выполнен анализ присутствия микроволнового источника над нейтральной линией (ИНЛ) в суперактивной области NOAA 12673, породившей ряд геоэффективных событий в сентябре 2017 г. Для оценки положения ИНЛ использовались данные Сибирского радиогелиографа в диапазоне 4–8 ГГц и Радиогелиографа Нобеяма на частоте 17 ГГц. Расчет коронального магнитного поля в нелинейном бессиловом приближении выявил протяженную структуру, состоящую из взаимосвязанных магнитных жгутов, расположенных практически по всей длине главной линии раздела полярностей фотосферного магнитного поля. ИНЛ проецируется в зону максимальных значений горизонтального магнитного поля основной энергосодержащей части этой структуры. В ходе каждой вспышки балла X активная область теряла магнитную спиральность и становилась источником КВМ.

Солнечно-земная физика, 7, № 1, с. 3-12 (2021) | Рубрика: 18

 

Колпак В.И., Могилевский М.М., Чугунин Д.В., Чернышов А.А., Моисеенко И.Л., Кумамото А., Тсучия Ф., Касахара Е., Шойи М., Миеши Е., Шинохара И. «Статистические свойства аврорального километрового радиоизлучения по наблюдениям на спутнике ERG (Arase)» Солнечно-земная физика, 7, № 1, с. 13-20 (2021)

DOI https://doi.org/10.12737/szf-71202102 Исследованы одновременно зарегистрированные одним спутником сигналы аврорального километрового радиоизлучения (АКР) от источников в авроральных областях Северного и Южного полушарий. В ходе выполнения настоящего исследования проведена подробная статистическая обработка непрерывных измерений АКР продолжительностью более двадцати месяцев на спутнике ERG (Arase), которая позволила подтвердить ранее полученные результаты о расположении источников АКР и сезонных изменениях интенсивности излучения. Открытые вопросы о процессах в источнике АКР могут быть решены с использованием данных о диаграмме направленности излучения в различных геомагнитных условиях. Для ответа на эти вопросы сделана оценка угла раствора конуса диаграммы направленности АКР в вечернем и утреннем секторах магнитосферы Земли.

Солнечно-земная физика, 7, № 1, с. 13-20 (2021) | Рубрика: 18

 

Синевич А.А., Чернышов А.А., Чугунин Д.В., Милох В.Я., Могилевский М.М. «Исследование мелкомасштабной структуры поляризационного джета во время геомагнитной бури 20 апреля 2018 г.» Солнечно-земная физика, 7, № 1, с. 21-33 (2021)

DOI https://doi.org/10.12737/szf-71202103 Проведено исследование мелкомасштабной структуры поляризационного джета в субавроральной области во время геомагнитной бури 20 апреля 2018 г. Представлены результаты измерений параметров плазмы внутри поляризационного джета с максимальной частотой опроса 1 кГц с помощью зондов Ленгмюра, установленных на микроспутнике NorSat-1. В результате исследования установлено наличие неоднородностей температуры и концентрации электронов внутри поляризационного джета с пространственными размерами десятки–сотни метров. Подтверждены известные ранее особенности развития поляризационного джета, а также обнаружено, что в рассмотренном случае с развитием геомагнитной активности распределение температуры электронов внутри джета разделяется на два ярко выраженных пика.

Солнечно-земная физика, 7, № 1, с. 21-33 (2021) | Рубрика: 18

 

Мишин В.В., Караваев Ю.А., Лунюшкин С.Б., Пенских Ю.В., Капустин В.Э. «Динамика продольных токов в двух полушариях Земли в ходе магнитосферной бури по данным техники инверсии магнитограмм» Солнечно-земная физика, 7, № 1, с. 34-39 (2021)

DOI https://doi.org/10.12737/szf-71202104 С помощью модернизированной техники инверсии магнитограмм продолжено изучение физических процессов в ходе магнитосферной бури 17.08.2001 на основе анализа динамики интенсивностей продольных токов (ПТ) в зоне 1 Ииджимы–Потемры в полярных ионосферах двух полушарий Земли. Полученные результаты о динамике асимметрии ПТ двух типов (утро–вечер и межполушарной), как и полученные нами ранее закономерности поведения токов Холла и границ полярных шапок в зависимости от наблюдавшейся в ходе бури большой азимутальной компоненты межпланетного магнитного поля (ММП) и сезонного хода проводимости, соответствуют открытой модели магнитосферы и результатам спутниковых наблюдений полярных сияний в двух полушариях. Показано, что ослабление асимметрии двух типов в распределении ПТ во время суббурь, имевших место в ходе исследуемой бури, происходит практически полностью в зимнем полушарии и значительно слабее в летнем. Это явление мы связываем с преобладанием эффекта длительного воздействия азимутальной компоненты ММП в освещенной полярной ионосфере летнего полушария над суббуревым эффектом симметризации ночной магнитосферы. Отмечен эффект симметризации полярной шапки и ПТ, создаваемый импульсом давления солнечного ветра в конце бури, предложено качественное объяснение этого эффекта.

Солнечно-земная физика, 7, № 1, с. 34-39 (2021) | Рубрика: 18

 

Мишин В.В., Мишин В.М., Курикалова М.А. «Динамика асимметрии распределения продольных токов во время суббурь в сезон равноденствия» Солнечно-земная физика, 7, № 1, с. 40-50 (2021)

DOI https://doi.org/10.12737/szf-71202105 На основе техники инверсии магнитограмм по данным мировой сети магнитометров исследуется динамика распределения продольных токов в ионосфере Северного полушария. Исследование проведено в период равноденствия в ходе двух суббурь во время длительного интервала с неизменной по знаку и величине азимутальной компонентой межпланетного магнитного поля. Обнаружено изменение знака асимметрии утро–вечер в распределении интенсивности продольных токов при переходе от одной суббури к другой. Причину этого изменения мы связываем с суточным вращением оси геомагнитного диполя, перемещением терминатора относительно центра полярной шапки, вызвавшим существенное изменение освещенности полярной ионосферы и ее проводимости. Кроме того, впервые обнаружена быстрая (в течение нескольких минут) смена знака асимметрии во время взрывной фазы первой суббури при нахождении терминатора вблизи центра полярной шапки и при равной освещенности полярной ионосферы в обоих полушариях. Мы предполагаем, что такая быстрая динамика асимметрии продольных токов при неизменной азимутальной компоненте ММП в период равноденствия могла быть следствием неустойчивости симметрии освещенности и проводимости ионосфер двух полушарий из-за суточного вращения Земли и сильной межполушарной асимметрии геомагнитного поля, что могло вызвать протекание межполушарного продольного тока.

Солнечно-земная физика, 7, № 1, с. 40-50 (2021) | Рубрика: 18

 

Николаева В.Д., Гордеев Е.И., Рогов Д.Д., Николаев А.В. «Калибровка модели авроральной ионосферы AIM-E для расчета параметров регулярного E-слоя» Солнечно-земная физика, 7, № 1, с. 51-58 (2021)

DOI https://doi.org/10.12737/szf-71202106 Модель E-слоя авроральной ионосферы (E-Region Auroral Ionosphere Model, AIM-E) была разработана для определения химического состава и электронной концентрации в авроральной зоне на высотах E-слоя (90–150 км). Входными параметрами AIM-E, характеризующими солнечную и магнитную активность, являются трехчасовой индекс Ap и суточное значение потока радиоизлучения Солнца на длине волны 10.7 см (индекс F10.7). В данной работе выполнено сопоставление расчетов электронной концентрации по модели AIM-E в дневное время при задании крайнего ультрафиолетового (УФ) излучения Солнца двумя различными способами: 1) на основе теоретически рассчитанного спектра крайнего УФ с использованием индекса F10.7 в качестве входного параметра; 2) на основе прямых измерений спектра крайнего УФ спутником TIMED. Проведена коррекция модели крайнего УФ-излучения EUVAC, используемой для задания источника фотоионизации в модели AIM-E. Полученные результаты расчетов критических частот регулярного слоя E показывают хорошее согласие с данными российских высокоширотных станций вертикального зондирования. Результаты данной работы позволят обеспечить высокую точность оперативной оценки характеристик регулярного слоя E с использованием суточного индекса F10.7 в качестве входного параметра.

Солнечно-земная физика, 7, № 1, с. 51-58 (2021) | Рубрика: 18

 

Федоров Р.Р., Бернгардт О.И. «Мониторинговые наблюдения метеорного эха на радаре EKB ИСЗФ СО РАН: алгоритмы, валидация, статистика» Солнечно-земная физика, 7, № 1, с. 59-73 (2021)

DOI https://doi.org/10.12737/szf-71202107 Рассматривается реализация алгоритмов автоматического поиска сигналов, рассеянных на метеорных следах, по данным радара EKB ИСЗФ СО РАН. Используется алгоритм, аналогичный алгоритмам, применяемым на специализированных метеорных установках. Алгоритм включает два этапа – обнаружение метеорного эха и определение его параметров. Было показано, что 13.12.2016, в день максимума потока Геминид, детектируемые алгоритмом рассеянные сигналы носят ракурсный характер и соответствуют рассеянию на неоднородностях, вытянутых в направлении радианта метеорного потока. Это подтверждает, что источником выделяемых с помощью алгоритма сигналов являются метеорные следы. В дополнение к алгоритму поиска и определения параметров метеорного рассеяния был реализован алгоритм косвенного определения высоты метеорного следа по характерному времени жизни следа с использованием модели атмосферы NRLMSIS-00. Для дальнейшего тестирования алгоритма был использован набор данных, полученных в 2017–2019 гг. В рамках тестирования было показано соответствие расчетных доплеровских скоростей, полученных с помощью нового алгоритма и алгоритма FitACF, в точках, отмеченных новым алгоритмом как рассеяние на метеорных следах. В работе приведено решение обратной задачи восстановления вектора скорости нейтрального ветра по полученным данным взвешенным методом наименьших квадратов. Проведено сравнение расчетных скоростей и направлений горизонтальных нейтральных ветров, полученных в модели трехмерного ветра и в модели горизонтального ветра HWM-14. Алгоритм позволяет вести обработку рассеянных сигналов в режиме реального времени и введен в постоянную эксплуатацию на радаре EKB ИСЗФ СО РАН.

Солнечно-земная физика, 7, № 1, с. 59-73 (2021) | Рубрика: 18

 

Зотов О.Д., Гульельми А.В., Силина А.С. «О возможной связи землетрясений со сменой знака радиальной компоненты межпланетного магнитного поля» Солнечно-земная физика, 7, № 1, с. 74-83 (2021)

DOI https://doi.org/10.12737/szf-71202108 Работа посвящена экспериментальному исследованию возможной связи землетрясений с вариациями межпланетного магнитного поля (ММП). Для анализа использованы мировые и региональные каталоги землетрясений и каталог, содержащий данные о секторной структуре ММП за несколько десятков лет. Основной методический прием состоял в сравнительном анализе частоты землетрясений в дни, когда Земля пересекает границу между секторами ММП, и в дни, когда Земля находится внутри сектора. В качестве индикатора событий, от которых зависит режим колебаний магнитосферы Земли, использован знак радиальной компоненты ММП. Перемена знака сигнализирует о вероятном пересечении Землей границы между секторами ММП, или, другими словами, о пересечении Землей токового слоя гелиосферы. Гипотеза о связи вариаций ММП и сейсмической активности состоит в том, что флуктуации ММП, проникая в магнитосферу, возбуждают в магнитосфере ультранизкочастотные электромагнитные колебания, которые, в принципе, могут повлиять на физические процессы в очагах землетрясений. Обнаружена слабая, но статистически достоверная связь вариаций ММП и сейсмической активности. Рассмотрены также другие параметры ММП, контролирующие ультранизкочастотные колебания геомагнитного поля.

Солнечно-земная физика, 7, № 1, с. 74-83 (2021) | Рубрика: 18

 

Янчуковский В.Л. «Солнечная активность и сейсмичность Земли» Солнечно-земная физика, 7, № 1, с. 84-97 (2021)

DOI https://doi.org/10.12737/szf-71202109 С использованием результатов непрерывных длительных наблюдений за 50 лет (включающих с 20-го по 24-й солнечные циклы) исследуется связь сейсмичности Земли с солнечной активностью. Увеличение числа сильных землетрясений на планете происходит на фазе спада солнечной активности, когда имеет место усиление потоков заряженных частиц из высокоширотных корональных дыр, а также в минимуме солнечной активности, когда интенсивность галактических космических лучей достигает максимальных значений. Рассмотрено изменение числа сильных землетрясений (с магнитудой М≥6) в связи с вариациями интенсивности галактических космических лучей, форбуш-понижениями и наземными возрастаниями интенсивности солнечных космических лучей (GLE-события). Показано, что число сильных землетрясений увеличивается после форбуш-понижений с запаздыванием во времени от ∼1 до ∼6 сут в зависимости от амплитуды форбуш-понижения, а после GLE-событий число сильных землетрясений увеличивается на ∼8-й день. В количестве сильных землетрясений наблюдается полугодовая вариация, которая как бы следует за полугодовой вариацией космических лучей с задержкой ∼1–2 мес. Высказано предположение, что связь солнечной активности с сейсмичностью Земли является опосредованной и осуществляется через модуляцию галактических космических лучей и атмосферные процессы, которые провоцируют появление землетрясений в регионах, где ситуация уже была подготовлена тектонической деятельностью.

Солнечно-земная физика, 7, № 1, с. 84-97 (2021) | Рубрика: 18

 

Белинская А.Ю., Ковалев А.А., Семаков Н.Н., Белинская С.И. «Вариации параметров ионосферы и геомагнитного поля во время Бачатского землетрясения 18 июня 2013 г.» Солнечно-земная физика, 7, № 1, с. 98-105 (2021)

DOI https://doi.org/10.12737/szf-71202110 Представлены результаты исследования вариаций ионосферных параметров и локальной магнитной постоянной до, во время и после Бачатского землетрясения, которое произошло 18.06.2013 в 23:02 UT (19.06.2013 в 06:02 LT) с магнитудой 5.3–5.6 и координатами эпицентра 54.29° N, 86.17° E. Для анализа использованы данные ионосферных станций Института нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН (ИНГГ СО РАН) и Томского государственного университета (ТГУ), а также геомагнитных обсерваторий сети INTERMAGNET. Установлено, что в период, предшествующий землетрясению, наблюдалось довольно резкое возрастание магнитного момента, а последующий период характеризовался не менее резким понижением магнитного момента. Отмечается, что наиболее перспективным для поиска геомагнитных предвестников землетрясений, представляется анализ среднесуточных значений локальной магнитной постоянной. Вывлено существование низкого сильного спорадического слоя Es в течение двух суток до события, подобного которому не наблюдалось 15 дней до и 15 дней после. Кроме того, в дни, предшествующие толчку, наблюдается превышение фоновых значений критической частоты слоя F2 более чем на 20% в локальные предвосходные часы. После землетрясения на вторые сутки выделялась ночная область пониженных значений (порядка 16%), которая сохранялась до утра третьих суток.

Солнечно-земная физика, 7, № 1, с. 98-105 (2021) | Рубрика: 18