Российский фонд
фундаментальных
исследований

Физический факультет
МГУ им. М.В.Ломоносова
 

Вычислительные методы и программирование. 2015. 16, № 4

 

Гончарский А.В., Романов С.Ю. «Итерационные методы решения обратных задач ультразвуковой томографии» Вычислительные методы и программирование, 16, № 4, с. 464-475 (2015)

Статья посвящена строгому математическому обоснованию итерационных методов решения обратных задач ультразвуковой томографии. Обратные задачи ультразвуковой томографии рассматриваются в рамках скалярной модели волнового уравнения. Эта модель учитывает такие волновые эффекты, как дифракция, рефракция и др. Обратная задача рассматривается как коэффициентная обратная задача. На строгом математическом уровне получено представление для производной Фреше функционала невязки по скорости распространения волн с(r), которая характеризует неоднородную структуру объекта. Представление для производной Фреше получено как для двумерных задач, так и в трехмерном случае. Используя полученное представление для производной Фреше, авторы статьи предлагают для решения обратной задачи использовать градиентные методы минимизации функционала невязки. Предложенная в статье итерационная процедура допускает высокий уровень распараллеливания на суперкомпьютере.

Вычислительные методы и программирование, 16, № 4, с. 464-475 (2015) | Рубрика: 12.06