Российский фонд
фундаментальных
исследований

Физический факультет
МГУ им. М.В.Ломоносова
 

06.18 Термоакустика, высокотемпературная акустика, фотоакустический эффект

 

Старовойтов Э.И., Плескачевский Ю.М., Леоненко Д.В., Тарлаковский Д.В. «Свободные колебания трехслойной пластины, возбужденные тепловым потоком» Инженерно-физический журнал, 96, № 6, с. 1445-1455 (2023)

Рассмотрено воздействие теплового потока постоянной интенсивности на круговую трехслойную пластину, теплоизолированную по контуру и нижней поверхности. Приведено решение задачи теплопроводности для пластины с усредненными по толщине теплофизическими параметрами материалов. Нестационарное температурное поле неоднородно по толщине пластины. Показано, что при мгновенном падении тепловой поток может вызвать прогиб и свободные колебания трехслойной пластины. Кинематика пакета пластины подчиняется гипотезе ломаной линии. После приложения нагрузки нормаль в тонких несущих слоях не изменяет своей длины и остается перпендикулярной к срединной поверхности слоя. В сравнительно толстом заполнителе деформированная нормаль сохраняет длину и прямолинейность, но поворачивается на малый дополнительный угол, т. е. учитывается сдвиг. Приведена постановка соответствующей начально-краевой задачи. Уравнения движения получены с помощью вариационного метода при учете поперечных сил инерции. На контуре пластины приняты граничные условия шарнирного опирания. Радиальные перемещения в слоях выражены через три искомые функции – прогиб пластины, сдвиг и радиальное перемещение срединной плоскости заполнителя. Показано, что эти искомые функции удовлетворяют неоднородной системе трех дифференциальных уравнений. Для решения системы применен метод разложения в ряд по построенной фундаментальной системе собственных ортонормированных функций. Выписано трансцендентное уравнение для получения соответствующих собственных чисел. Проведен числовой параметрический анализ решения в зависимости от геометрических и теплофизических характеристик материалов слоев и времени воздействия теплового потока Ключевые слова: нестационарное температурное поле, трехслойная круговая пластина, свободные колебания

Инженерно-физический журнал, 96, № 6, с. 1445-1455 (2023) | Рубрики: 04.15 06.18

 

Макалкин Д.И., Карабутов А.А., Саватеева Е.В. «Прецизионное измерение групповой скорости ультразвука твердых сред в образцах миллиметровой толщины» Акустический журнал, 69, № 6, с. 685-694 (2023)

Предлагается методика высокоточного локального измерения групповой скорости продольных волн в твердых образцах миллиметровой толщины. Для достижения требуемой точности используется лазерное термооптическое возбуждение субмикросекундных ультразвуковых видеоимпульсов и сверхширокополосная пьезоэлектрическая регистрация отраженных от контролируемого образца акустических сигналов. Исследуются плоскопараллельные образцы из дюраля, кварца и стали толщиной 2–6 мм. Для достижения необходимой точности измерения групповой скорости ультразвука используется математическая обработка формы сигнала с компенсацией дифракции ультразвукового пучка при распространении в образце. Показана возможность обеспечения неопределенности измерения групповой скорости ультразвука в диапазоне частот 1–15 МГц на уровне 0.1% в образцах миллиметровой толщины.

Акустический журнал, 69, № 6, с. 685-694 (2023) | Рубрики: 06.03 06.18 06.23

 

Гешеле В.Д., Раскатов И.П. «Физические механизмы вибрационного горения твердого биотоплива» Инженерно-физический журнал, 96, № 5, с. 1180-1185 (2023)

Представлены результаты исследования вибрационного горения твердого биотоплива. Установлено. что при переходе к вибрационному горению температура пламени снижается, а плотность теплового потока на стенке камеры сгорания растет. При этом процесс горения сопровождается интенсивным акустическим излучением. Предложена теоретическая модель вибрационного горения твердого биотоплива, Ключевые слова: вибрационное горение, твердое биотопливо, термоакустические автоколебания, пламя, тепловой поток

Инженерно-физический журнал, 96, № 5, с. 1180-1185 (2023) | Рубрика: 06.18

 

Косяков В.А., Фурсенко Р.В., Минаев С.С., Чудновский В.М. «Физические механизмы схлопывания парового пузыря при лазерно-индуцированном кипении» Прикладная механика и техническая физика, 64, № 6, с. 109-113 (2023)

Численно исследовано влияние различных физических механизмов на стадии схлопывания парового пузыря и последующего образования кумулятивной струи в процессе лазерно-индуцированного кипения вблизи торца тонкого волновода, погруженного в холодную жидкость. В зависимости от интенсивности испарения выделено и описано три режима процесса

Прикладная механика и техническая физика, 64, № 6, с. 109-113 (2023) | Рубрика: 06.18